

AUGUST 25, 2025 ISCB 2025

# CAN TREATMENT EFFECT TESTING IN TRIALS WITH INTERCURRENT EVENTS BE NEARLY ASSUMPTION-FREE?

Joint work with Kelly Van Lancker and Stijn Vansteelandt

Georgi Baklicharov — georgi.baklicharov@ugent.be



#### INTRODUCTION

Aim: Test for causal effect of binary randomized treatment A on an outcome Y(t), planned to be measured at fixed visit times  $t = 0, 1, ..., \tau$ .

#### INTRODUCTION

- Aim: Test for causal effect of binary randomized treatment A on an outcome Y(t), planned to be measured at fixed visit times  $t = 0, 1, ..., \tau$ .
- Complicated in the presence of intercurrent events (ICEs) such as
  - treatment switching
  - rescue therapy
  - truncation by death
  - · ...

#### **COMMON APPROACHES**

#### Compare treated and untreated patients

- in terms of their last recorded ICE-free outcomes: Last Observation Carried Forward (LOCF).
- who reached the end of the study without ICE: Per Protocol (PP).
- in terms of ratio of (recurrent event) outcome and survival time: While-Alive Estimand. (Schmidli et al., 2023)
- who would have reached the end of the study without ICE under either treatment or control: Principal Stratification (PS).
  - Truncation by death: Survivor Average Causal Effect (SACE).

(Robins, 1986; Frangakis and Rubin, 2004)

under a hypothetical scenario where the ICE does not occur: Hypothetical Estimands.





#### **Current Medical Research and Opinion**

ISSN: 0300-7995 (Print) 1473-4877 (Online) Journal homepage: www.tandfonline.com/journals/icmo20

Long-term efficacy and safety of canagliflozin monotherapy in patients with type 2 diabetes inadequately controlled with diet and exercise: findings from the 52-week CANTATA-M study

Kaj Stenlöf, William T. Cefalu, Kyoung-Ah Kim, Esteban Jodar, Maria Alba, Robert Edwards, Cindy Tong, William Canovatchel & Gary Meininger

### **EXAMPLE 1: SWITCHING TO RESCUE MEDICATION**

- Patients (deterministically)
   switch to rescue
   medication at the first time
   t their blood sugar level
   Z(t) exceeds a threshold.
- Treatment does not affect the outcome but it does affect Z(t) for t > 0.



### **EXAMPLE 2: TRUNCATION BY DEATH**

- Treatment does not affect outcome, but only survival time.
- Outcome at time t is normal with mean  $\alpha_0 + \alpha_1 t + \alpha_2 L + \alpha_3 U$ , with L an observed and U an unobserved common cause of outcome and survival.



#### **PROPOSAL**

- T last time point before an ICE (dropout, rescue medication, etc.)
- Potential outcomes  $Y^a(t)$  and  $T^a$ , under treatment a=0,1

#### Proposal:

Contrast the outcome of a treated individual with the outcome of an untreated individual at the last time  $M = \min(T^1, T^{*0})$  both were observed prior to an ICE.

Pairwise Last Observation Time (PLOT) estimand

$$E\left\{Y^{1}(M)-Y^{*0}(M)\right\}$$

- Comparing at time M:
  - Entire population
  - Not hypothetical

















# CONDITIONAL PAIRWISE LAST OBSERVATION TIME (CPLOT) ESTIMAND

#### Conditional Pairwise Last Observation Time (CPLOT) estimand

$$E[E\{Y^{1}(M) - Y^{*0}(M)|L = L^{*}\}]$$
 with  $M = \min(T^{1}, T^{*0})$ 

- Pairs of random, independent individuals with the same baseline covariates L, one treated but the other not.
- Generally different from PLOT estimand (non-collapsibility).
- When individuals with the same covariates are being considered, then the time at which both are ICE-free will tend to be larger.
- We view this estimand as being preferable by 'truncating' fewer measurements.

### IDENTIFICATION, ESTIMATION AND INFERENCE

- Straightforward identification and estimation of PLOT estimand without assumptions.
- Not straightforward for CPLOT estimand because of the curse of dimensionality.
- Express estimand using data from a single subject (without assumptions), and use standard debiased machine learning techniques for estimation and inference.
- The nuisance parameters include:

$$P(A = 1), P(T > s|A, L), E\{Y(s)|A, L, T > s\}, E\{Y(s)|A, L, T \ge s\},$$

for all  $s \leq \tau$ .

Asymptotic normality, with variance given by the variance of the influence functions.

# CAN TREATMENT EFFECT TESTING IN TRIALS WITH ICES BE NEARLY ASSUMPTION-FREE?



# CAN TREATMENT EFFECT TESTING IN TRIALS WITH ICES BE NEARLY ASSUMPTION-FREE?

Comparing outcomes at selected time points may yield nonzero estimands under the null.

$$E\left\{Y^{1}(\min(T^{1},T^{*0}))-Y^{*0}(\min(T^{1},T^{*0}))\right\}=E\left\{Y^{1}(\min(T^{1},T^{*0}))-Y^{0}(\min(T^{*1},T^{0}))\right\}$$

- Standard causal inference framework:
  - (1) Estimand, (2) Assumptions to identify the estimand from observable data, (3) Estimator.
- We started from observable data and constructed estimands that make clever use of it.
- Then, we investigated the assumptions for valid treatment effect testing.
- We prove that our proposal works under essentially the same assumptions as competitive methods and even relax some assumptions.

# CAN TREATMENT EFFECT TESTING IN TRIALS WITH ICES BE NEARLY ASSUMPTION-FREE?



#### KEY TAKEAWAYS

- New estimands for treatment effect testing that avoid hypothetical thinking.
- Asymptotically valid inference for the entire population.
- Weaker assumptions than alternative methods.

# QUESTIONS?

