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THE MODELING TRADITION

Statistical modeling

Models are central

Recent critiques:
(Breiman, 2001; Freedman, 2001; Robins & Rotnitzky, 2001;
van der Laan, 2015; ...)

Occam’s dilemma: simple & interpretable
vs complex & plausible.
We need to make compromises
⇒ misspecification and bias.
Model building ⇒ bias and post-selection
inference (Leeb & Pötscher, 2006; Dukes & Vansteelandt, 2020)

Algorithmic modeling

Model misspecification is much less a
concern.

But focus is on prediction.

Not aimed at explanation.

No real uncertainty assessments.

The causal modeling culture increasingly builds on the algorithmic culture,
instead targeting model-free estimands and providing valid uncertainty assessments.
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HOW CAN WE BRIDGE

THESE MODELING CULTURES?



ASSUMPTION-LEAN REGRESSION (1)

That is what is achieved in a recent JRSS B discussion paper on assumption-lean modeling.
Vansteelandt S, Dukes O. Assumption-lean inference for generalised linear model parameters (with discussion). JRSS-B 2022.

Consider the semi-parametric structural quantile model

Qτ (Y
a|L)︸ ︷︷ ︸

Qτ (Y |A=a,L)

− Qτ (Y
0|L)︸ ︷︷ ︸

unknown fct of L

= βτ (L)a for all a.

Assume that adjustment for L suffices to control for confounding: Y a ⊥⊥ A|L.

Techniques for partially linear quantile models are relevant, but have limited utility:
(Lee, 2003; Sun, 2005; Wu et al., 2010; Wu and Yu, 2014; Lv et al., 2015; Sherwood and Wang, 2016; Zhong and Wang, 2023)

computational demands;
challenges in high-dimensional applications (due to reliance on kernel weighting or splines);
biased inference when the model is wrong.
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ASSUMPTION-LEAN REGRESSION (2)

Because the model
Qτ (Y

a|L)− Qτ (Y
0|L) = βτ (L)a for all a

is deliberately kept simple, we will not assume it to hold, but use it to communicate our
results.

The real modeling is done through statistical / machine learning,
results of which are projected and de-biased in view of a specific estimand.

As such, we ensure that we are estimating a well-understood exposure effect
and obtain valid inferences,
even when the model is misspecified, and despite the use of machine learning.
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ASSUMPTION-LEAN

QUANTILE REGRESSION



BE CLEAR ABOUT THE ESTIMAND (1)
A ‘hygienic’ analysis is clear about the estimand, even when models are used.

For instance, with a binary randomized treatment A,
we map βτ (L) in model

Qτ (Y
1|L)− Qτ (Y

0|L) = βτ (L)

onto the model-free estimand

E
{

Qτ (Y
1|L)− Qτ (Y

0|L)
}

,

which is what we will estimate.

This choice prevents that naïve interpretation as a ‘difference between quantiles’
would be misleading.

In contrast, in standard (partially linear) quantile regression,
it is unclear what we are estimating when the model is wrong.
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BE CLEAR ABOUT THE ESTIMAND (2)

When A is not randomized, we may consider the same estimand,
or generalize it to the weighted average:

E[w(L)
{

Qτ (Y 1|L)− Qτ (Y 0|L)
}
]

E {w(L)}
,

with
w(L) = P(A = 1|L)P(A = 0|L).
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DEBIASED MACHINE LEARNING



A DEBIASED ESTIMATOR

When Y a ⊥⊥ A|L, the estimand can be identified as

E ({A − E(A|L)} [Qτ (Y |A, L)− E {Qτ (Y |A, L)|L}])
E
[
{A − E(A|L)}2]

Based on the estimand’s efficient influence function,
we construct the following debiased estimator

1

n

n∑
i=1

Ai − Ê(Ai |Li)
1
n

∑n
i=1{Ai − Ê(Ai |Li)}2

[
Q̂τ (Yi |Ai , Li)− Ê

{
Q̂τ (Yi |Ai , Li)

∣∣Li

}]

+
1

n

n∑
i=1

Ai − Ê(Ai |Li)
1
n

∑n
i=1{Ai − Ê(Ai |Li)}2

[
τ − I{Yi ≤ Q̂τ (Yi |Ai , Li)}
f̂Y |A,L(Q̂τ (Yi |Ai , Li)|Ai , Li)

]
,

where the nuisance parameters are substituted by data-adaptive estimates (e.g., ML).
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A TARGETED LEARNING ESTIMATOR
Targeted learning ‘simplifies’ this by forcing the second line to give zero,
which gives an asymptotically equivalent estimator.
It does so by ‘targeting’ an initial estimator Q̃τ (Y |A, L) so that

1

n

n∑
i=1

{
Ai − Ê(Ai |Li)

}[
τ − I{Yi ≤ Q̃τ (Yi |Ai , Li)}
f̂Y |A,L(Q̃τ (Yi |Ai , Li)|Ai , Li)

]
≈ 0.

This is done by fitting the quantile regression model

Q̃τ (Yi |Ai , Li) = Q̂τ (Yi |Ai , Li) + δ · Ai − Ê(Ai |Li)

f̂ (Q̂τ (Yi |Ai , Li)|Ai , Li)

Next, we calculate the estimator as

1

n

n∑
i=1

Ai − Ê(Ai |Li)
1
n

∑n
i=1(Ai − Ê(Ai |Li))2

[
Q̃τ (Yi |Ai , Li)− Ê

(
Q̃τ (Yi |Ai , Li)

∣∣Li

)]
.
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INFERENCE
Inference is based on the efficient influence function after cross-fitting.

We furthermore require the following terms to be op(n−1/2):

E
[
(Q̂τ (Y |A, L)− Qτ (Y |A, L))2

]
,

E

[(
1 − f (Qτ (Y |A, L)|A, L)

f̂ (Q̂τ (Y |A, L)|A, L)

)2
]1/2

E
[
(Q̂τ (Y |A, L)− Qτ (Y |A, L))2

]1/2
,

E
[
(E(A|L)− Ê(A|L))2

]1/2
E
[(

E(Qτ (Y |A, L)|L)− Ê(Q̂τ (Y |A, L)|L)
)2
]1/2

,

E
[
(E(A|L)− Ê(A|L))2

]
(if βτ ̸= 0).

Weaker than standard parametric assumptions, but still non-negligible.
This is why our inferences are assumption-lean, rather than assumption-free
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SIMULATION STUDIES



SIMULATION STUDIES

We considered inference for βτ in

Qτ (Y
a|L)− Qτ (Y

0|L) = βτa for all a.

L is 4-dimensional multivariate normal.
2 settings:

Binary exposure: P(A = 1|L) = expit(−0.5 + 0.2L1 − 0.4L2 − 0.4L3 + 0.2L4).
Continuous exposure: A ∼ N (−0.5 + L1 − 2L2 − 2L3 + L4, 22).

The outcome was generated according to

Y = 1 + A + sin(L1) + L2
2 + L3 + L4 + L3 · L4 + ϵ,

where ϵ ∼ Gamma(k , θ).

Nuisance parameters are estimated using ‘grf’, ‘SuperLearner’ and ‘FKSUM’ R-packages.

We contrast the proposal with an oracle quantile regression and a naive plug-in estimator.
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SIMULATION STUDIES
τ = 0.5 τ = 0.9

Setting estimator
bias SD SE Cov bias SD SE Cov

Oracle -0.0017 0.19 0.20 96.6 -0.011 0.56 0.60 96.0
Plugin -0.70 0.12 0.015 0.1 -0.64 0.22 0.036 1.6Bin.
TL-CF 0.012 0.22 0.25 97.2 0.14 0.68 0.63 91.4
Oracle -0.0013 0.035 0.036 95.6 0.0010 0.10 0.11 94.6
Plugin -0.17 0.064 0.016 0.5 -0.39 0.11 0.021 0.0Cont.
TL-CF -0.011 0.044 0.042 92.9 0.012 0.14 0.10 85.3

Sample size n = 500, quantile τ , 1000
simulations

Oracle: correctly specified QR

Plugin: Naive plug-in estimator

TL-CF: Targeted Learning with 5-fold
cross-fitting

bias: Monte Carlo bias

SD: Monte Carlo standard deviation

SE: averaged estimated standard error

Cov: coverage of 95% CI
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CONCLUSION



CONCLUSION

Assumption-lean modeling aims to make statistical / causal analyses more hygienic,
by being clear about what we are estimating when the model is wrong.

Obtain valid inferences, despite the use of flexible data-adaptive / machine learning
algorithms, even when the model is wrong.

By focusing on conditional quantiles, we can
tackle continuous exposures,
make better patient-specific treatment decisions, and
study treatment effect heterogeneity.
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