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THE MODELING TRADITION




THE MODELING TRADITION

Statistical modeling Algorithmic modeling
m Models are central m Model misspecification is much less a
m Recent critiques: concern.
(Breiman, 2001; Freedman, 2001; Robins & Rotnitzky, 2001; . .
van der Laan, 2015; ... m But focus is on prediction.
m Occam’s dilemma: simple & interpretable m Not aimed at explanation.

vs complex & plausible.
m We need to make compromises
= misspecification and bias.
m Model building = bias and post-selection

iNference (Leeb & Patscher, 2006; Dukes & Vansteelandt, 2020)

m No real uncertainty assessments.

The causal modeling culture increasingly builds on the algorithmic culture,
instead targeting model-free estimands and providing valid uncertainty assessments.

3/20



HOwW CAN WE BRIDGE
THESE MODELING CULTURES?




ASSUMPTION-LEAN REGRESSION (1)

m That is what is achieved in a recent JRSS B discussion paper on assumption-lean modeling.

Vansteelandt S, Dukes O. Assumption-lean inference for generalised linear model parameters (with discussion). JRSS-B 2022.

m Consider the semi-parametric structural quantile model

Q- (Y?L) — @ (Y°|L) = 3,(L)a foralla.

Q- (Y|A=a)  unknown fctof L

m Assume that adjustment for L suffices to control for confounding: Y# L A|L.

m Techniques for partially linear quantile models are relevant, but have limited utility:
(Lee, 2003; Sun, 2005; Wu et al., 2010; Wu and Yu, 2014; Lv et al., 2015; Sherwood and Wang, 2016; Zhong and Wang, 2023)
m computational demands;
m challenges in high-dimensional applications (due to reliance on kernel weighting or splines);
m biased inference when the model is wrong.
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ASSUMPTION-LEAN REGRESSION (2)

m Because the model
Q-(Y?L) — Q- (Y°|L) = 3,(L)a foralla
is deliberately kept simple, we will not assume it to hold, but use it to communicate our
results.
m The real modeling is done through statistical / machine learning,
results of which are projected and de-biased in view of a specific estimand.
m As such, we ensure that we are estimating a well-understood exposure effect

and obtain valid inferences,
even when the model is misspecified, and despite the use of machine learning.

6/20



ASSUMPTION-LEAN
QUANTILE REGRESSION




BE CLEAR ABOUT THE ESTIMAND (1)

m A ‘hygienic’ analysis is clear about the estimand, even when models are used.

m For instance, with a binary randomized treatment A,
we map /3-(L) in model
Q- (Y'L) — @ (Y°IL) = 5. (L)

onto the model-free estimand
E{a,(Y'[L) — o, (Y°|L)},

which is what we will estimate.

m This choice prevents that naive interpretation as a ‘difference between quantiles’
would be misleading.

m In contrast, in standard (partially linear) quantile regression,
it is unclear what we are estimating when the model is wrong.
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BE CLEAR ABOUT THE ESTIMAND (2)

When A is not randomized, we may consider the same estimand,
or generalize it to the weighted average:

Elw(L) {Q(Y'|L) — Q- (Y|)}]

E{w(L)}

with
w(L) = P(A = 1|L)P(A = 0|L).
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A DEBIASED ESTIMATOR
m When

E({A-E(AL)} @ (YIA L) —E{Q (Y|A L)[L}])
E [{A-E(AlL)}]

m Based on the estimand’s efficient influence function,
we construct the following debiased estimator

_ Z iy {A _A |(LA)|L)}2 [@r(YiAi, L) — IAE{AT(Y/A/,L,')!L,}]
,Z A\L) [T—I{WS@T(YI|AI’LI)}]

i=1 7 2ui= 1{A,— (AI‘LI)}Z ?Y\A,L(ér(Y/\A/,L/)\A,',L/)

where the nuisance parameters are substituted by data-adaptive estimates (e.g., ML).
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A TARGETED LEARNING ESTIMATOR

m Targeted learning ‘simplifies’ this by forcing the second line to give zero,
which gives an asymptotically equivalent estimator.
m It does so by ‘targeting’ an initial estimator Q. (Y

/{Y, < Qr (YI‘AML)}
*Z{A - A’L)} [fYAL(oT(YIA,,L)IAuL)] =P

m This is done by fitting the quantile regression model

, L) so that

A — B(A/|L)
f(Q-(Yi|A, L)AL L)

Q-(Yi|AiL L) = Q- (Yi|AL L)+ -
m Next, we calculate the estimator as

B(AlL)
*21 A—E(A\L))

i=1 n

O (VilA, L) — I@(@(YAA,, L,)|L,~)] .

12/20



INFERENCE
m Inference is based on the efficient influence function after cross-fitting.
m We furthermore require the following terms to be op(n_1/2):

E[(@-(YIA L) ~ 0 (YIA L)),
(1 e (vlaL)a L))2

Q- (Y|A L)|A L)

1/2
E [(@-(Y|A L) — a-(v|A L)]"?,

aow)]"

E

e [ - Bany] e [(E(QT(Y\A, L)L) — B(a,(v

E[(B(AlL) — B(AL)?| (it 8, #0)

m Weaker than standard parametric assumptions, but still non-negligible.
m This is why our inferences are assumption-lean, rather than assumption-free
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SIMULATION STUDIES

m We considered inference for 3 in
Q-(Y?|L) — Q- (Y°|L) = B,a forall a.

L is 4-dimensional multivariate normal.

2 settings:
m Binary exposure: P(A = 1|L) = expit(—0.5 + 0.2Ly — 0.4L, — 0.4L3 + 0.2L,).
m Continuous exposure: A ~ N (—0.5 + Ly — 2L, — 2L + Ly, 22).

The outcome was generated according to

Y=1+A+sin(Ly)+ L5+ L+ Ls+Lls Lyt

where € ~ Gamma(k, ).
Nuisance parameters are estimated using ‘grf’, ‘SuperLearner’ and ‘FKSUM’ R-packages.

We contrast the proposal with an oracle quantile regression and a naive plug-in estimator.
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SIMULATION STUDIES

Oracle -0.0017  0.19

Bin. Plugin -0.70 0.12
TL-CF 0.012 0.22

Oracle -0.0013 0.035

Cont. Plugin -0.17  0.064
TL-CF -0.011  0.044

m Sample size n = 500, quantile 7, 1000
simulations

m Oracle: correctly specified QR

m Plugin: Naive plug-in estimator

m TL-CF: Targeted Learning with 5-fold
cross-fitting

0.20
0.015

0.25
0.036
0.016
0.042

96.6
0.1
97.2
95.6
0.5
92.9

-0.011
-0.64
0.14

0.0010
-0.39

0.012

0.56
0.22
0.68
0.10
0.11
0.14

bias: Monte Carlo bias

0.60
0.036
0.63
0.11
0.021
0.10

Cov: coverage of 95% CI

96.0
1.6
91.4
94.6
0.0
85.3

SD: Monte Carlo standard deviation

SE: averaged estimated standard error
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CONCLUSION

m Assumption-lean modeling aims to make statistical / causal analyses more hygienic,
by being clear about what we are estimating when the model is wrong.

m Obtain valid inferences, despite the use of flexible data-adaptive / machine learning
algorithms, even when the model is wrong.

m By focusing on conditional quantiles, we can

m tackle continuous exposures,
m make better patient-specific treatment decisions, and
m study treatment effect heterogeneity.
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